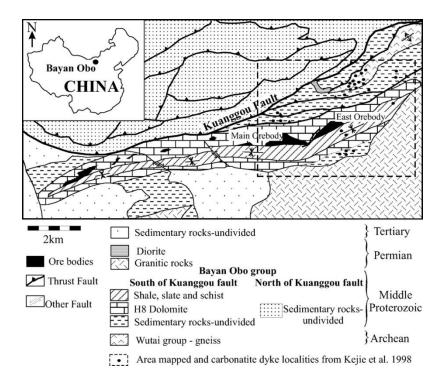
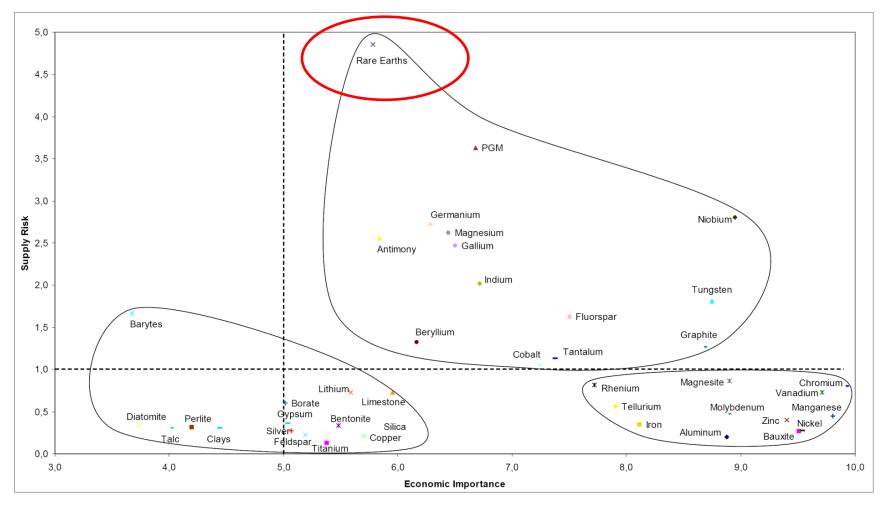


Rare Earth Recycling and the Balance Problem

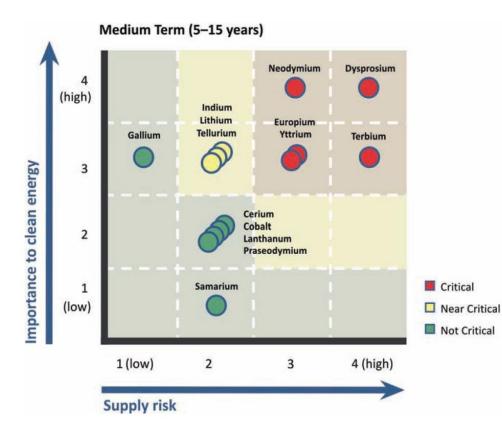
Koen Binnemans

KU Leuven - University of Leuven (Belgium)


REE production is dominated by China (monopoly position)


Bayan Obo (Inner Mongolia, China)

Rare earths as critical raw materials (2010)


Source: report EU commission "Critical raw materials for the EU" (2010)

Rare earths are critical raw materials (2014)

Economic importance

Rare earths as critical raw materials (DOE)

Five rare earths are identified as very critical:

- neodymium
- europium
- terbium
- dysprosium
- yttrium

Essential for permanent magnets and lamp phosphors

Source: report US Department of Energy(2010)

Early applications: mixed rare earths

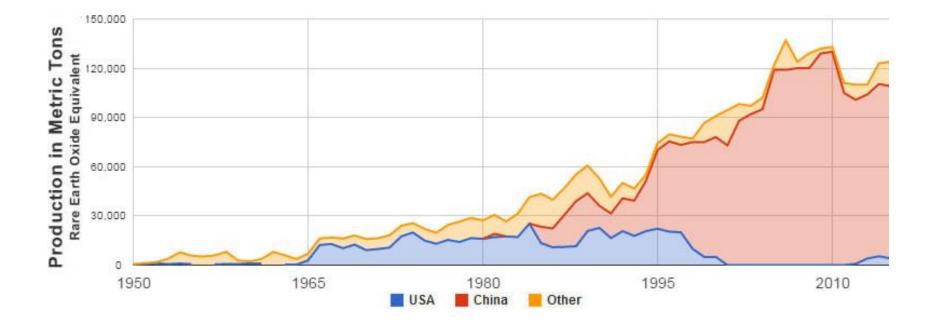
- Mainly lanthanum and cerium
- Catalyst industry
 - Stabilization of zeolites for fluid cracking catalysts (FCC) during steam regeneration
- Metallurgy (mischmetall)
 - Graphite nodularization in cast iron
 - Ultimate desulfurization of steels
 - Lighter flints made of iron-mischmetall alloy
 - Grain growth inhibition in light metals
 - Battery alloys (NiMH)
- Glass industry
 - Polishing powder (CeO_2)

Modern applications: pure rare earths

- Permanent magnets
 - NdFeB (Nd,Pr,Dy)
 - \circ SmCo (Sm) (< 2% of market)

• Phosphors

- Phosphors for trichromatic fluorescent lamps (Y, Eu, Tb, La, Ce)
- Phosphors for CRTs (color television, computer monitors (Eu,Y)
- X-ray intensifying screens (Gd,La,Tb)
- Glass industry
 - Optical glass (La)



REE usage by application

Application	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Other
Magnets			23.4	69.4			2	0.2	5		
Battery alloys	50	33.4	3.3	10	3.3						
Metallurgy	26	52	5.5	16.5							
Auto catalysts	5	90	2	3							
FCC	90	10									
Polishing	31.5	65	3.5								
powder											
Glass	24	66	1	3						2	4
additives											
Phosphors	8.5	11				4.9	1.8	4.6		69.2	
Ceramics	17	12	6	12						53	
Others	19	39	4	15	2		1			19	

(source: Lynas Corporation)⁸

Global production of rare-earth oxides

REO production numbers do not reflect availability of individual REEs Total REO production: 120,000 tonnes/year

Source: http://geology.com/articles/rare-earth-elements/

Relative abundance of rare earths

- Rare earths are not rare (Ce is as abundant as Cu)
- Elements become scarcer with increasing atomic number Z (abundance decreases over lanthanide series)
- Elements with an even Z are more abundant than elements with odd Z (*Oddo-Harkins rule*)

REE content of selected minerals (%)

REE	Bastnasite Mountain Pass, USA	Bastnasite Bayan Obo, China	Monazite Mt. Weld, Australia	Xenotime Lehat, Malaysia	High Y RE laterite Longnan, China	Low Y RE laterite Xunwu, China	Loparite Kola Peninsula Russia
La	33.8	23.0	25.5	1.2	1.8	43.4	25.0
Ce	49.6	50.0	46.7	3.1	0.4	2.4	50.5
Pr	4.1	6.2	5.3	0.5	0.7	9.0	5.0
Nd	11.2	18.5	18.5	1.6	3.0	31.7	15.0
Sm	0.9	0.8	2.3	1.1	2.8	3.9	0.7
Eu	0.1	0.2	0.4	Trace	0.1	0.5	0.1
Gd	0.2	0.7	<0.1	3.5	6.9	3.0	0.6
Tb	0.01	0.1	<0.1	0.9	1.3	Trace	Trace
Dy	0.03	0.1	0.1	8.3	6.7	Trace	0.6
Ho	0.01	Trace	Trace	2.0	1.6	Trace	0.7
Er	0.01	Trace	Trace	6.4	4.9	Trace	0.8
Tm	0.01	Trace		1.1	0.7	Trace	0.1
Yb	0.01	Trace		6.8	2.5	0.3	0.2
Lu	Trace	Trace		1.0	0.4	0.1	0.2
Y	0.1	Trace	<0.1	61.0	65.0	8.0	1.3

Consequences of REE abundances

• To get 1 ton of Eu_2O_3 from bastnäsite, one needs to produce (and sell) the following amounts of REOs (tons):

La ₂ O ₃	300
CeO ₂	450
Pr ₆ O ₁₁	38
Nd_2O_3	118
Sm ₂ O ₃	7.3
Gd_2O_3	1.4
Y_2O_3	0.9

Balance problem

- **Balance problem** = demand and supply of the individual rare-earth elements (REEs) have to be equal at any time
- Also called: *Balancing problem*
- Became an issue when applications shifted from the use of mixed rare earths to pure rare earths
- Of importance for REE manufacturers
- Concept introduced by P. Falconnet (Rhône-Poulenc) P. Falconnet, Less-Common Metals **111**, 9-15 (1985).
- Literature:

K. Binnemans et al. *JOM* 65, 846-848 (2013).K. Binnemans and P.T. Jones, *J. Sust. Metall.* 1, 29–38 (2015).

Balance problem

- Ideal situation: perfect balance between demand and production of all REE elements
- Market in balance corresponds to lowest price for any REE: production costs are shared by all elements
- Market in balance is very difficult to obtain, because of changes in demand by changes in applications
- Compromise between two alternatives:
 - Adjusting overall production to optimize production costs: creates surpluses of some REEs and shortages of other REEs (increases price of elements high in demand)
 - Increasing overall production to meet demand of all REEs and stockpiling other REEs (increases overall price)

K. Binnemans and P.T. Jones, J. Sust. Metall. 1, 29–38 (2015).

Neodymium-driven LREE market

- Present light REE market is driven by demand for Nd for NdFeB magnets (about 25,000 tons)
- Sufficient quantities of REE ores have to be mined to produce at least 25,000 tons of Nd
- Excess of La, Ce, Sm

Dysprosium-driven HREE market

- Balance problem is less a problem for HREE market (much smaller volumes than LREE)
- Present heavy REE market is driven by demand for Dy for NdFeB magnets (about 1,600 tons)
- Excess of Gd, Ho, Tm, Yb, Lu (stockpiled)

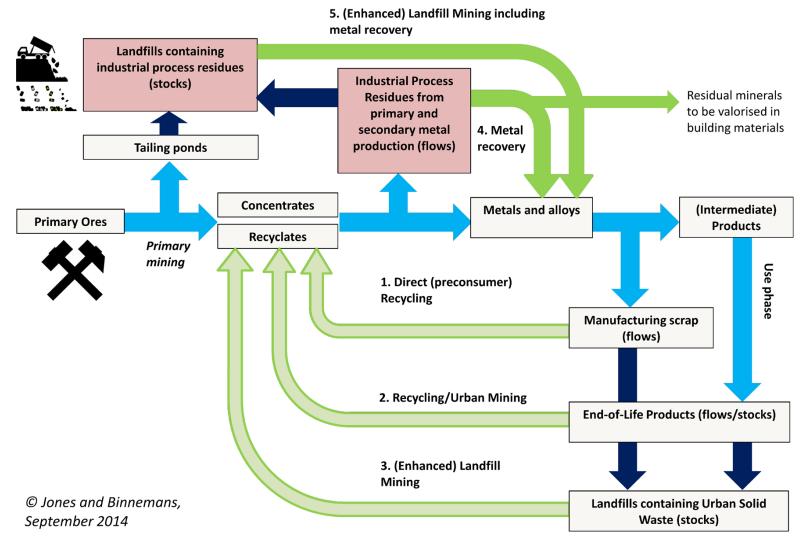
Rapidly changing REE markets

- New applications can bring REE market rapidly out of balance
- Presently: market driven by Nd and Dy
- Before 1985:
 - No Nd metal produced in industrial quantities
 - No industrial applications for Dy
- 1980s: market driven by Sm (SmCo magnets)
- 1960s-1970s: market driven by Eu (color TV screens)
- Decline in use of Eu, Y, Tb in lamp phosphors

Balance problem: possible solutions

- Diversification of REE resources
- Recycling
- Substitution
- Reduced use
- New high-volume applications for La, Ce

K. Binnemans and P.T. Jones, J. Sust. Metall. 1, 29–38 (2015).


Diversification of REE resources

- Bastnäsite
- Monazite
- Xenotime
- Ion-adsorption clays

 $(Ce,La)(CO_3)F$ (Ce,La,Nd,Th)PO₄ YPO₄

- Euclialyte $Na_4(Ca,Ce)_2(Fe^{2+},Mn,Y)ZrSi_8O_{22}(OH,Cl)_2$
- Allanite $(Ce,Ca,Y)_2(Al,Fe^{3+})_3(SiO_4)_3OH$
- Loparite $(Ce,La,Na,Ca,Sr)(Ti,Nb)O_3$
- Combining REE ores of different deposits allows making REE concentrate that reflects better market needs of individual REEs

Recycling = closing the materials loop

Recycling and the balance problem

- Recycling of NdFeB magnets to recover Nd and Dy means that less primary ores have to be mined to ensure supply of Nd and Dy
- Less mining means less over production of cerium, samarium,
- Recycling of Eu, Tb, Y from lamp phosphors helps to maintain the balance of HREE

Recycling of rare earths

- *Less than 1%* of the REEs were being recycled in 2011 inefficient collection, technological issues, lack of incentives
- Main sources:
 - lamp phosphors (Eu, Tb, Y, Gd, La, Ce)
 - permanent magnets (Nd, Pr, Tb, Dy)
 - nickel metal hydride batteries (La, Ce) + Ni

Key reference

Journal of Cleaner Production 51 (2013) 1-22

Contents lists available at SciVerse ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Review

Recycling of rare earths: a critical review

Koen Binnemans^{a,*}, Peter Tom Jones^b, Bart Blanpain^b, Tom Van Gerven^c, Yongxiang Yang^d, Allan Walton^e, Matthias Buchert^f

^aKU Leuven – University of Leuven, Department of Chemistry, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium

^b KU Leuven – University of Leuven, Centre for High Temperature Processes and Sustainable Materials Management,

Department of Metallurgy and Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee, Belgium

^cKU Leuven – University of Leuven, Department of Chemical Engineering (CIT), Willem de Croylaan 46, Box 2423, B-3001 Heverlee, Belgium

^d TU Delft, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft, The Netherlands

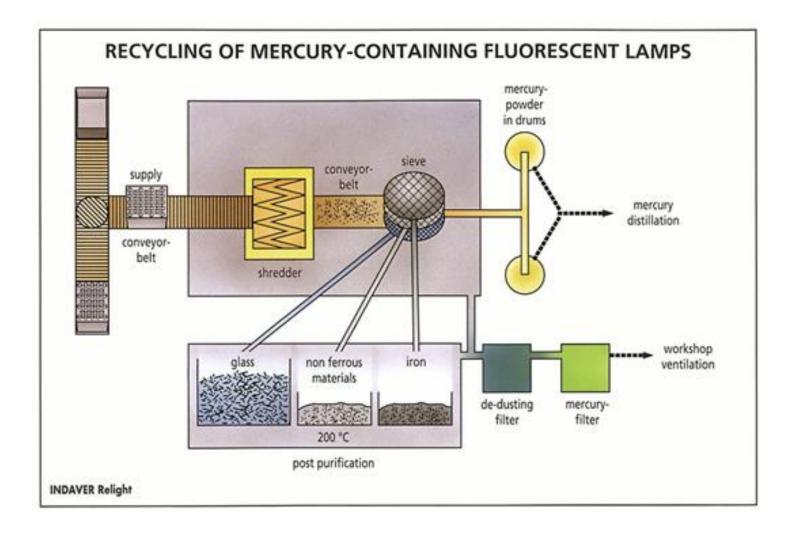
^e University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT, UK

f Oeko-Institut e.V., Infrastructure & Enterprises Division, Rheinstrasse 95, D-64295 Darmstadt, Germany

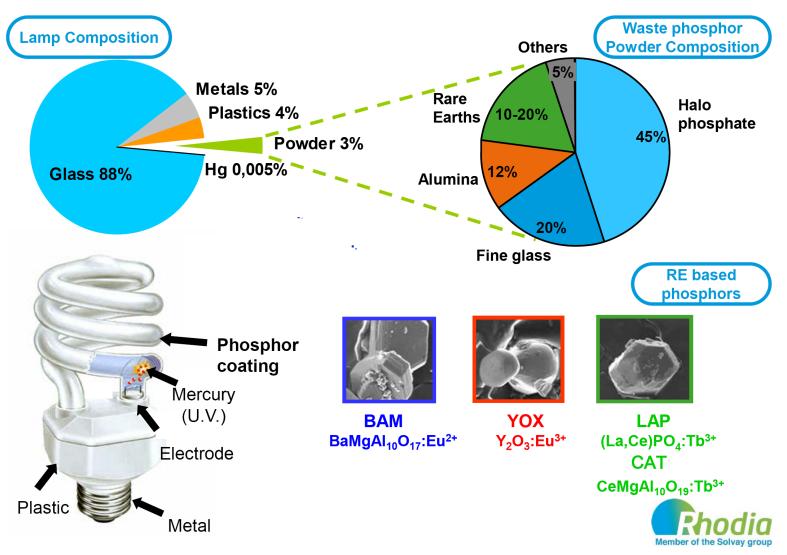
Cleane

Lamp phosphors

Year	Phosphors					
1960	$Ca_{5}(PO_{4})_{3}Cl:Sb^{3+},Mn^{2+}$ (white)					
1974	BaMg ₂ Al ₁₆ O ₂₇ :Eu ²⁺	CeMgAl ₁₀ O ₁₉ :Tb ³⁺	Y ₂ O ₃ :Eu ³⁺			
1990	BaMgAl ₁₀ O ₁₇ :Eu ²⁺ (Sr,Ca) ₅ (PO ₄) ₃ Cl:Eu ²⁺	$(La,Ce)PO_{4}:Tb^{3+}\\CeMgAl_{10}O_{19}:Tb^{3+}\\(Gd,Ce)MgB_{5}O_{10}:Tb^{3+}$	Y ₂ O ₃ :Eu ³⁺			
2005	BaMgAl ₁₀ O ₁₇ :Eu ²⁺	(La,Ce)PO ₄ :Tb ³⁺	Y ₂ O ₃ :Eu ³⁺			


Different options for recycling of lamp phosphors

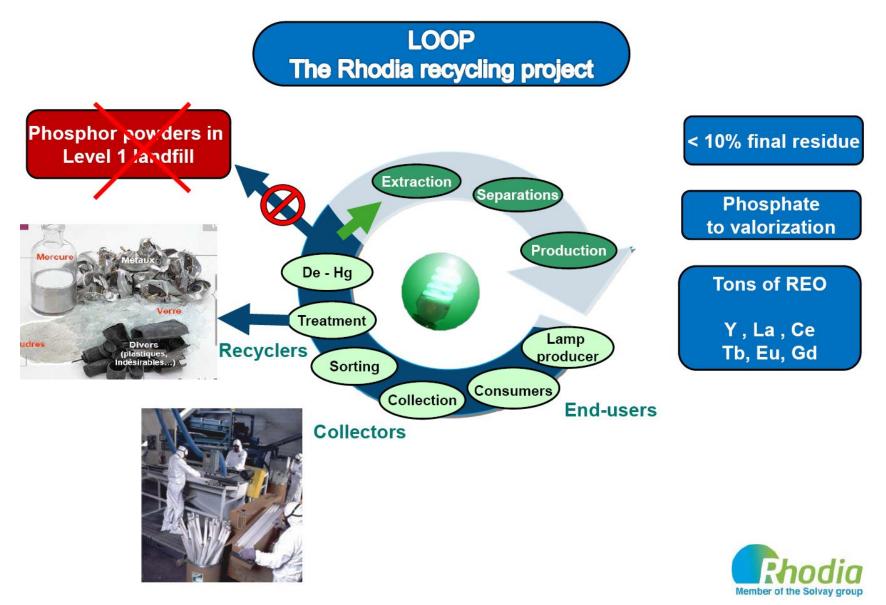
- Direct re-use
- Separation of phosphors in individual components
- Recovery of REE content



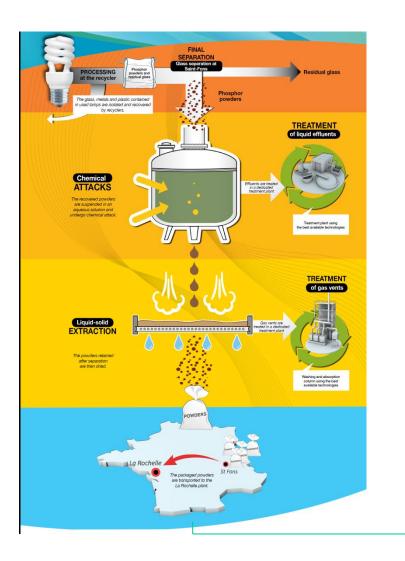
Crushing and sieving of fluorescent lamps

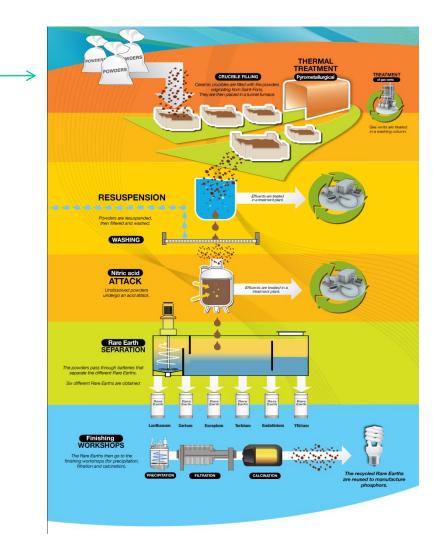
Composition of waste lamp phosphor fraction

Composition of waste lamp phosphor fraction

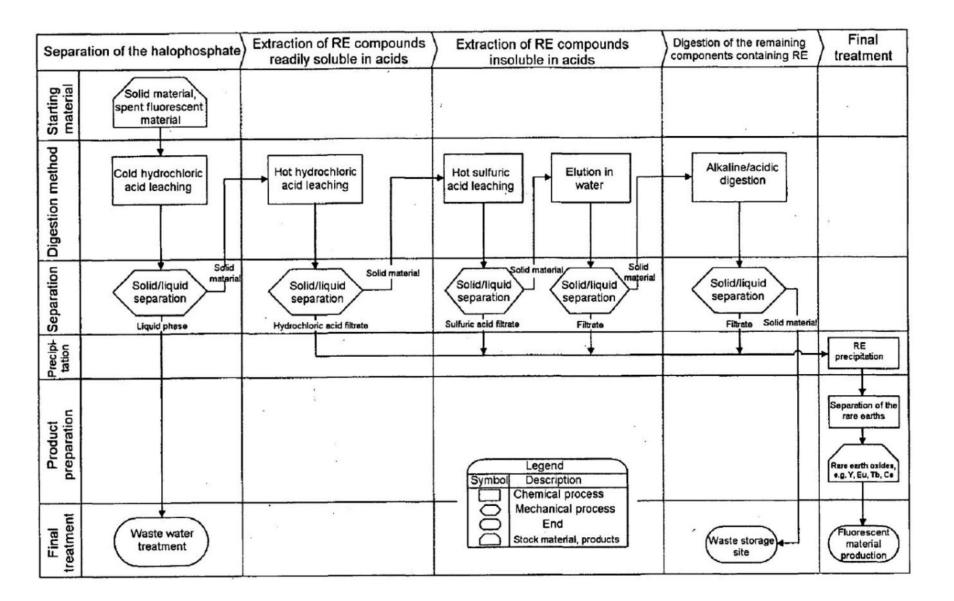

Per 100 g (without SiO₂)*

Eu_2O_3	1 g
Gd_2O_3	2 g
CeO ₂	2 g
Y_2O_3	22 g
La_2O_3	1 g
Tb ₄ O ₇	<1 g
AI_2O_3	7 g
CaO	35 g
BaO	1 g
MnO	1 g
Sb_2O_3	1 g
$P_2 O_5$	27 g


Name	Compound	Waste fraction (wt%)	Value
BAM	BaMgAI ₁₀ O ₁₇ :Eu ²⁺	5	Low
LAP	LaPO ₄ :Ce ³⁺ ,Tb ³⁺	5	High
CAT	(Ce,Tb)MgAl ₁₁ O ₁₉	5	High
ΥΟΧ	Y ₂ O ₃ :Eu ³⁺	20	High
HALO	(Sr,Ca) ₁₀ (PO ₄) ₆ (Cl,F) ₂ :Sb ³⁺ , Mn ²⁺	40-50	Low
Others	SiO ₂ / Al ₂ O ₃ / Hg (trace)	15-25	Low

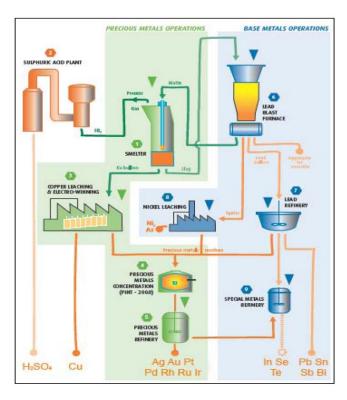

*Source: Solvay patent: J. J. Braconnier and A. Rollat, Solvay, European Patent, EP 2419377 A1, 2012.

Solvay's lamp recycling process



Solvay's lamp recycling process

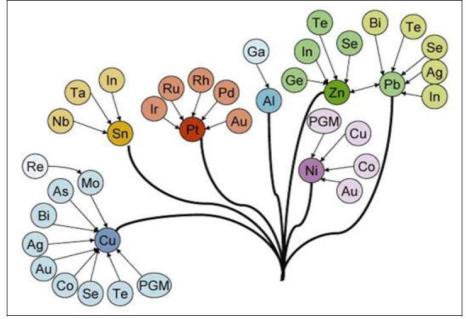
http://www.solvay.com/en/binaries/Process-Saint-Fons-151777.pdf http://www.solvay.com/en/binaries/Process-La-Rochelle-EN-151498.pdf

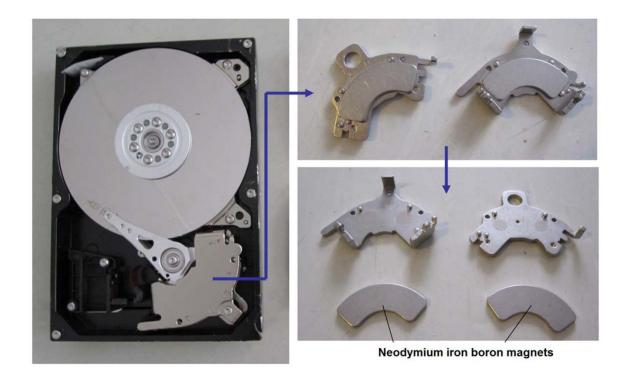


Ref.: Otto, R., Wojtalewicz-Kasprzac, A., 2012. Method for Recovery of Rare Earths From Fluorescent Lamps. US Patent 2012/0027651 A1

Recycling of REE from NdFeB magnets

- Main focus on NdFeB magnets (98-99% of the market) During pyrometallurgical recycling of metals from electronic scrap and used catalysts, they end up as oxides in slags. Concentration in oxide slags is too low for recycling
- In many applications, the amount of REE per item is low (a few grams), so that deep-level dismantling is recommended to recover REE-containing objects.
- Dismantling can be automated (e.g. Hitachi)

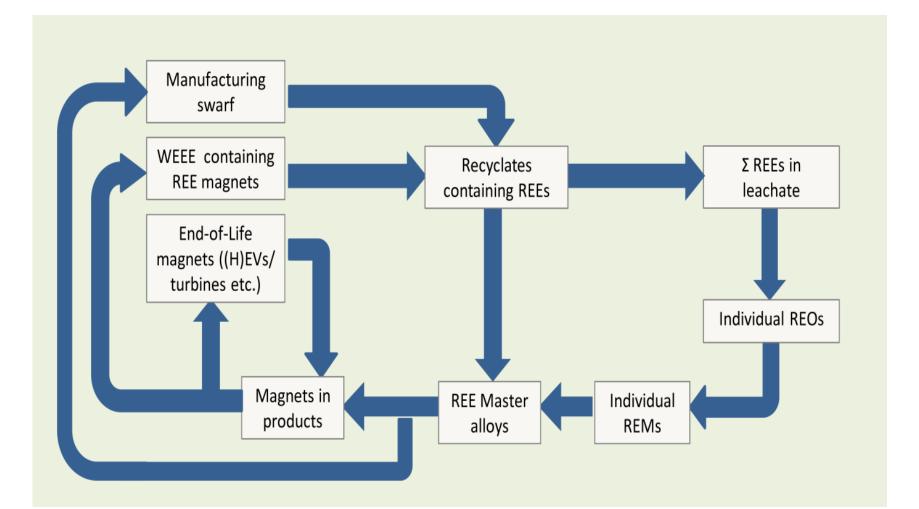

Umicore's metal recycling plant (Hoboken, Belgium)


- REEs lost to oxide slags (low concentration)

- slags used as building material

Amounts of rare earths in electronic devices

Magnets: 2 wt.% of HDD REE: 0.6 wt.% of HDD


Source: Öko-Institut

Mobile phones: only 0.1 to 0.25 g of REEs ³⁵

Dismantling by Hitachi

Flow sheet for recycling of magnets

Different options for recycling of magnets

- Direct re-use in current form/shape
- Reprocessing of alloys to magnets after hydrogen decrepitation
- Hydrometallurgical methods (dissolution in acids)
- Pyrometallurgical methods (high temperatures)

Direct re-use in current form/shape

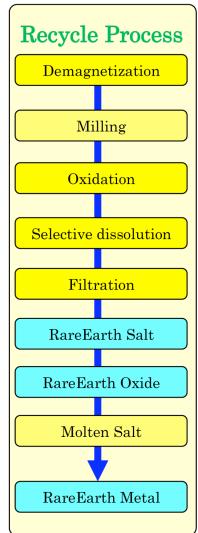
- Advantages:
 - Most economical way of recycling (low energy input, no consumption of chemicals)
 - No waste generated
- Disadvantages:
 - Only for large easily accessible magnets (wind turbines, large electric motors and generators in hybrid and electric vehicles
 - Not available in large quantities in scrap today

Reprocessing of alloys to magnets after hydrogen decrepitation

- Advantages
 - Less energy input required than for hydrometallurgical and pyrometallurgical routes
 - No waste generated
- Disadvantages
 - Not applicable to mixed scrap feed, which contains magnets with large compositional variations
 - Not applicable to oxidized magnets

For more information: see lecture of Allan Walton

Hydrometallurgical methods


- Advantages
 - Generally applicable to all types of magnet compositions
 - Applicable to non-oxidized and oxidized alloys
 - Same processing steps as those for extraction of rare earths from primary ores
- Disadvantages
 - Many process steps required before obtaining new magnets
 - Consumption of large amounts of chemicals
 - Generation of large amounts of waste water

Pyrometallurgical methods (liquid metal extraction)

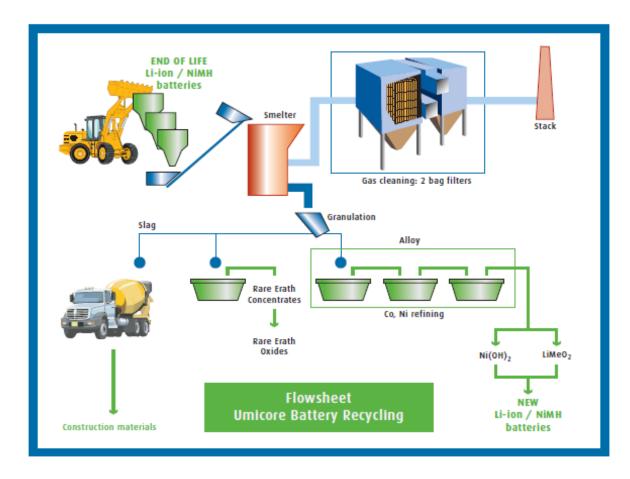
- Advantages
 - Generally applicable to all types of magnet compositions
 - No generation of waste water
 - Fewer processing steps than hydrometallurgical methods
 - Direct melting allows obtaining master alloys
 - Liquid metal extraction allows obtaining REEs in metallic state
- Disadvantages
 - Larger energy input required
 - Direct smelting and liquid metal extraction cannot be applied to oxidized magnets
 - Electroslag refining and the glass slag method generate large amounts of solid waste

Magnet recycling by SANTOKU

- SANTOKU Corporation has opened in 2012 a plant in Tsuruga (Japan) for recycling Nd and Dy from magnets
 - Motor magnets (air conditioners)
 - Magnet production scrap
- Demagnetization by heating (6 hours at 573 K)
- Milling under 75 micron by jaw crusher and pulverizer
- Oxidation by stirring for 12 hours in an alkaline solution
- Selective dissolution in HCl
- Magnet alloys prepared by molten salt electrolysis

Different options for recycling of NiMH batteries

- Hydrometallurgical routes
- Pyrometallurgical routes


Hydrometallurgical routes

- Advantages
 - Low investment costs
 - Recycling possible of different waste fractions (cathode and anode materials, metals from casing) that can be marketed separately
- Disadvantages
 - Many manual operations are required for dismantling of batteries and separating the different components
 - Large consumption of chemicals

Pyrometallurgical routes

- Advantages
 - Well-developed technology
 - Energy recovery from plastic casings and other organic components
 - Same processing steps used for extracting REEs from slags as from primary ores
- Disadvantages
 - High investment cost for furnace
 - REEs need to be extracted from slags
 - REEs are obtained as mixtures and further separation is required

Recycling process for NiMH/ Li-ion batteries @Umicore

Source: Maurits van Camp (Umicore)

Recycling process for NiMH/ Li-ion batteries @Umicore

- Process developed for NiMH batteries
 - First industrial scale process
- Co-operation with Solvay
 - Umicore produces REE-concentrate
 - Umicore separates REO from harmful elements
 - Solvay refines REE concentrate
 - For EOL Portable NiMH batteries only
- Process of recovery of REE is not compatible with process of recovery PGM from exhaust catalysts

Balance problem: possible solutions

- Diversification of REE resources
- Recycling
- Substitution
- Reduced use
- New high-volume applications for La, Ce

K. Binnemans and P.T. Jones, J. Sust. Metall. 1, 29-38 (2015).

Substitution

- Replace critical metals by less critical ones
- NdFeB magnets

 $Nd \rightarrow Pr$ $Dy \rightarrow Tb$

- SmCo magnets
- Non-REE magnets
- Fluorescent lamps \rightarrow LEDs
- CRT \rightarrow LCD \rightarrow OLED

Fluorescent lamps

Lamp phosphors

Year	Phosphors		
1960	$Ca_{5}(PO_{4})_{3}Cl:Sb^{3+},Mn^{2+}$ (white)		
1974	BaMg ₂ Al ₁₆ O ₂₇ :Eu ²⁺	CeMgAl ₁₀ O ₁₉ :Tb ³⁺	Y ₂ O ₃ :Eu ³⁺
1990	BaMgAl ₁₀ O ₁₇ :Eu ²⁺ (Sr,Ca) ₅ (PO ₄) ₃ Cl:Eu ²⁺	$(La,Ce)PO_{4}:Tb^{3+}\\CeMgAl_{10}O_{19}:Tb^{3+}\\(Gd,Ce)MgB_{5}O_{10}:Tb^{3+}$	Y ₂ O ₃ :Eu ³⁺
2005	BaMgAl ₁₀ O ₁₇ :Eu ²⁺	(La,Ce)PO ₄ :Tb ³⁺	Y ₂ O ₃ :Eu ³⁺

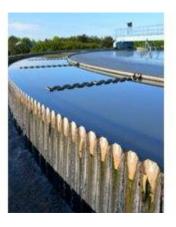
LEDs

• Blue LED + yellow phosphor = white light

```
blue LED: GaN or GaInN
yellow phosphor: Ce-doped Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> (Ce:YAG)
```

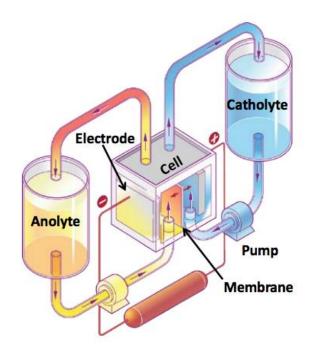

Reduced use

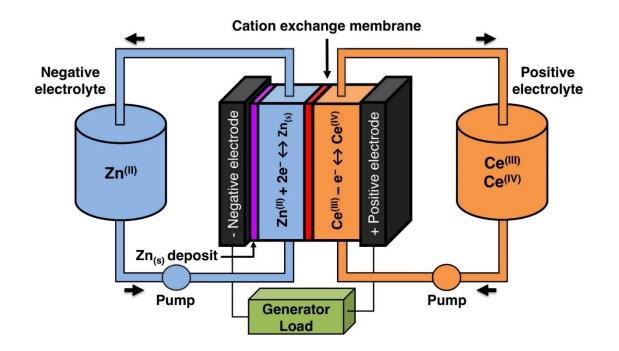
- Less Dy in NdFeB magnets: by grain boundary diffusion, Dy is concentrated near grain boundaries
- Dy-free NdFeB magnets
- Removal of Nd from concentrate for making mischmetal


New high-volume applications for La, Ce

- Compared to the other REEs, La and Ce are very abundant and cheap
- For western REE mining companies, La and Ce content of their ores often have negative effect on REE basket value
- Oversupply of La and Ce can be partially overcome by developing new high-volume applications
- Research towards new applications must be facilitated

Water purification


- Phosphate removal from swimming pools
- Rapid and stable precipitation of P in municipal and industrial wastewater facilities
- Concentrated LaCl₃ (or mixed REECl₃ solution)
- LaPO₄ has a very low solubility in water


Cerium redox flow batteries

- Batteries with large storage capacities: store electricity produced by wind turbines and solar cells
- Chemical energy is stored in dissolved redox couples in external tanks
- Easy upscaling (larger tank volumes)
- Charge/discharge in electrolysis cell with ion-exchange membranes
- Cerium redox flow batteries (*balance problem*)

Source: newenergyandfuel.com

Cerium redox flow batteries

Diagram of the Divided Zinc-Cerium Flow Battery

Thermal stabiliser of PVC (La, Ce)

- Stabilisers added to PVC to protect against thermal decomposition during processing > 200 °C, and to protect against heat and UV irradiation during use.
- (Pb), (Cd), Zn, Sn, Ba, Ca salts (mainly stearates)
- La and Ce salts have stronger stabilising effect than Ca and Zn salts at the same dose.
- About 3 kg of REE stabilisers for 1 tonne of PVC
- (global PVC production: >40 million of tonnes)

Conclusions

- Availability of REEs is determined not only by production volumes of REE ores, but also by natural abundances of individual REEs
- Matching supply and demand of all REEs is a challenge (**balance problem**)
- Present market is driven by Nd and Dy demand
- New applications could change market situation rapidly
- Solutions to balance problem

New REE ores

Recycling

Substitution and reduced use

New high-volume applications (La, Ce)