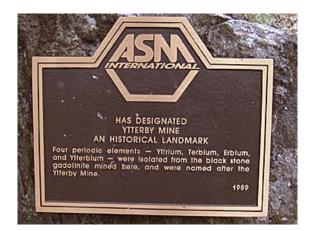


Rare earths and their applications

Koen Binnemans

KU Leuven - University of Leuven (Belgium)

Rare earths in the periodic table


Source: www.tre-ag.com

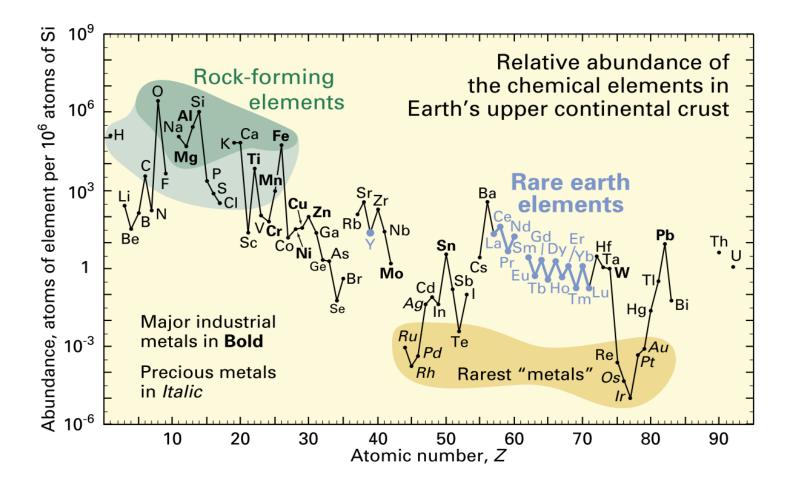
Lanthanides = series of elements La-Lu Rare earths = lanthanides + Y + Sc REEs = rare-earth elements LREE = La-Sm HREE = Eu-Lu, Y

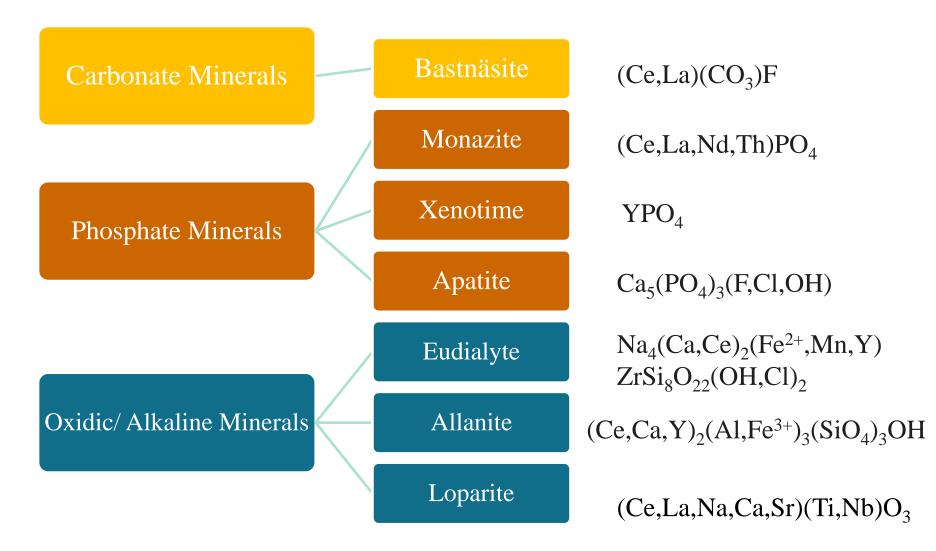
Rare earths: names and symbols

Name	Chemical Symbol	Atomic Number (Z)			
Scandium	Sc	21			
Yttrium	Y	39			
Lanthanum	La	57			
Cerium	Ce	58			
Praseodymium	Pr	59			
Neodymium	Nd	60			
Promethium	Pm	61			
Samarium	Sm	62			
Europium	Eu	63			
Gadolinium	Gd	64			
Terbium	Tb	65			
Dysprosium	Dy	66			
Holmium	Ho	67			
Erbium	Er	68			
Thulium	Tm	69			
Ytterbium	Yb	70			
Lutetium	Lu	71			

Ytterby (Sweden)

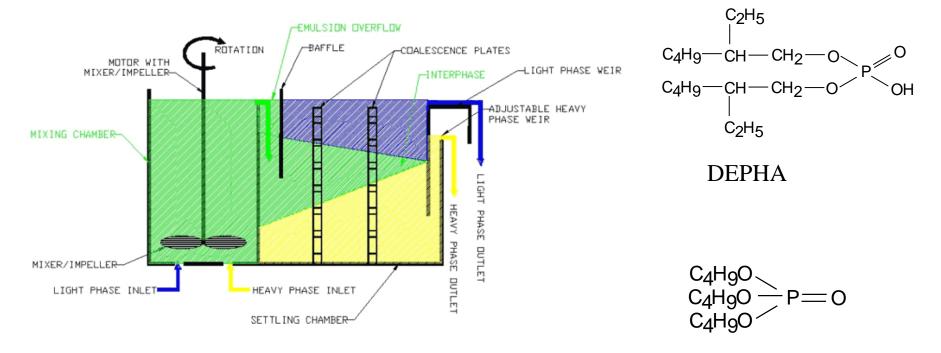
Rare earths: How do they look like?





Rare earths are not very rare!

Source: US Geological Survey

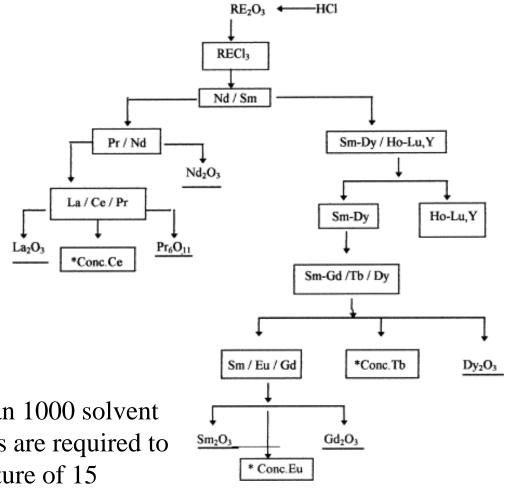

Rare-earth ore minerals

Rare-earth separation problem

- Ores contain mixtures of all rare earths (except Pm)
- Many applications require pure rare earths
- Mixtures are difficult to separate due to similarities in chemical properties of rare earths
- Separation of rare earths is one of the most difficult separations in inorganic chemistry
- Separation is done on an industrial scale by solvent extraction (SX)

Separation of REEs by solvent extraction

LABORATORY MIXER-SETTLERS:


TBP

http://www.rousselet-robatel.com

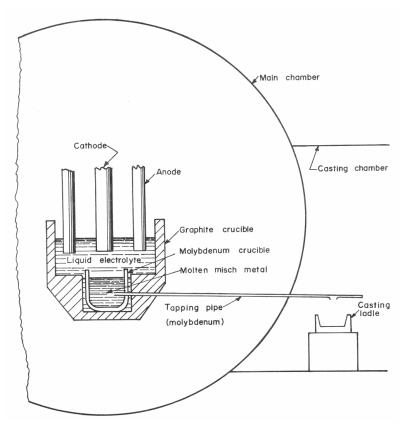
REE solvent extraction plant (Solvay)

Separation scheme of REE mixtures

Often more than 1000 solvent extraction steps are required to separate a mixture of 15 elements.

Electrolytic preparation of REE metals

For REE with melting point <1050 °C (La, Ce, Pr, Nd, MM)


Traditionally from molten chlorides:

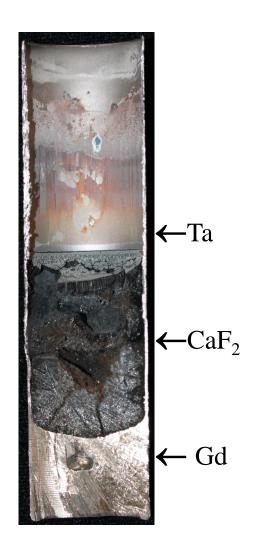
Cathode reaction: $Ln^{3+} + 3e^- \rightarrow Ln$ Anode reaction: $2 Cl^- \rightarrow Cl_2 + 2e^-$

Iron cathode, graphite anode

More recently, from oxides dissolved in LnF_3 -LiF flux at 1100 °C:

 $2 \operatorname{Ln}_2 \operatorname{O}_3 \rightarrow 4 \operatorname{Ln} + 3 \operatorname{O}_2 + \text{some } \operatorname{F}_2$

Calciothermic preparation of REE metals


For REEs with melting point >1050°C (REE = Sc, Y, Gd \rightarrow Er, Lu)

 $Ln_2O_3 + 3(NH_4F \cdot HF) \xrightarrow{700^{\circ}C} 2LnF_3 + 3H_2O + 3NH_3$

 $2LnF_3 + 3Ca \xrightarrow{1500^{\circ}C} 2Ln + 3CaF_2$

or

 $Ln_{2}O_{3} + 6HCl \xrightarrow{\sim 600^{\circ}C} 2LnCl_{3} + 3H_{2}O$ $2LnCl_{3} + 3Ca \xrightarrow{1200^{\circ}C} 2Ln + 3CaCl_{2}$

Lanthanothermic preparation of Sm, Eu, Tm, Yb

$$La + Ln_2O_3 \rightarrow Ln\uparrow + La_2O_3$$

REE	Boiling point (°C)	Melting Point (°C)
La	3464	918
Sm	1794	1074
Eu	1527	822
Tm	1950	1545
Yb	1196	819

Configurations of rare-earth ground states

Element	Configuration				
Sc		3d4s ²			
Υ		4d5s ²			
La	4f ⁰	5d6s ²			
Се	4f ¹	5d6s ²			
Pr	4f ³	6s ²			
Nd	4f ⁴	6s ²			
Pm	4f ⁵	6s ²			
Sm	4f ⁶	6s ²			
Eu	4f ⁷	6s ²			
Gd	4f ⁷	5d6s ²			
Tb	4f ⁹	6s ²			
Dy	4f ¹⁰	6s ²			
Но	4f ¹¹	6s ²			
Er	4f ¹²	6s ²			
Tm	4f ¹³	6s ²			
Yb	4f ¹⁴	6s ²			
Lu	4f ¹⁴	5d6s ²			

- Displayed on periodic tables and in many textbooks
- Generally not important to most scientists who work with solids or liquids
- Important in chemical thermodynamic cycles if the Ln_(g) gas state is involved

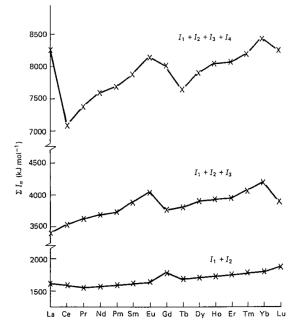
Electronic configurations of Ln³⁺ ions: filling of 4f orbitals

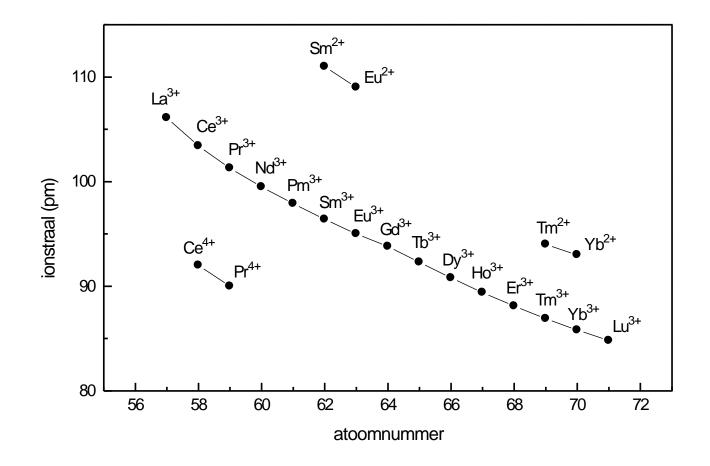
Table 9.14 Names, symbols, and properties of the lanthanides										
Z	Name	Symbol	Configuration of \mathbf{M}^{3+} E^{\ominus}/\mathbf{V} $r(\mathbf{M}^{3+})/\mathrm{\AA}^{*}$ 0.							
57	Lanthanum	La	[Xe]	-2.38	1.16	3				
58	Cerium	Се	[Xe]4 <i>f</i> ¹	-2.34	1.14	3, 4				
59	Praseodymium	Pr	[Xe]4 <i>f</i> ²	-2.35	1.13	3, 4				
60	Neodymium	Nd	$[Xe]4f^3$	-2.32	1.11	2(n), 3				
61	Promethium	Pm	[Xe]4 <i>f</i> ⁴	-2.29	1.09	3				
62	Samarium	Sm	$[Xe]4f^5$	-2.30	1.08	2(n), 3				
63	Europium	Eu	[Xe]4 <i>f</i> ⁶	-1.99	1.07	2(a), 3				
64	Gadolinium	Gd	[Xe]4 <i>f</i> ⁷	-2.28	1.05	3				
65	Terbium	Tb	[Xe]4 <i>f</i> ⁸	-2.31	1.04	3, 4				
66	Dysprosium	Dy	[Xe]4 <i>f</i> ⁹	-2.29	1.03	2(n), 3				
67	Holmium	Но	$[Xe]4f^{10}$	-2.33	1.02	3				
68	Erbium	Er	$[Xe]4f^{11}$	-2.32	1.00	3				
69	Thulium	Tm	$[Xe]4f^{12}$	-2.32	0.99	2(n), 3				
70	Ytterbium	Yb	$[Xe]4f^{13}$	-2.22	0.99	2(a), 3				
71	Lutetium	Lu	$[Xe]4f^{14}$	-2.30	0.98	3				

*Ionic radii for C.N. = 8 from R.D. Shannon, Acta Crystallogr. A32, 751 (1976).

†Oxidation numbers in bold type indicate the most stable states; other states that can be achieved in aqueou: (a) and nonaqueous (n) solution are also included.

Why are Ln^{3+}_{aq} ions so stable?




Figure 2.3

Cumulative ionization energies across the lanthanide Series (reproduced by permission of Macmillan from S.A. Cotton, *Lanthanides and Actinides*, Macmillan, 1991).

Table 2.4 Enthalpies of hydration of the lanthanide ions (values given as $-\Delta H$ hydr/kj mol⁻¹

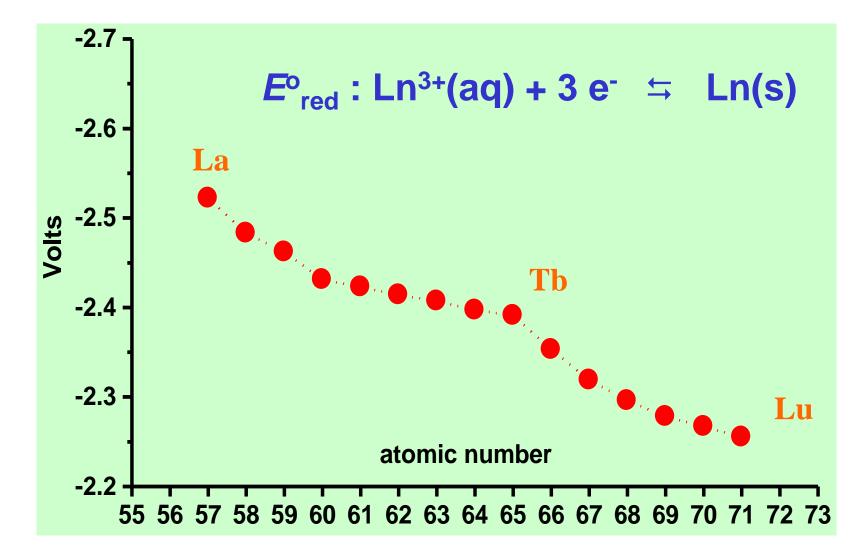
La ³⁺	Ce ³⁺	Pr^{3+}	Nd ³⁺	Pm ³⁺	Sm ³⁺	Eu ³⁺	Gd^{3+}	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	Lu ³⁺	Y ³⁺
3278	3326 Ce ⁴⁺ 6309	3373	3403	3427	Sm^{2+}		3517	3559	3567	3623	3637	3664	3706 Yb ²⁺ 1594	3722	3583

Lanthanide contraction

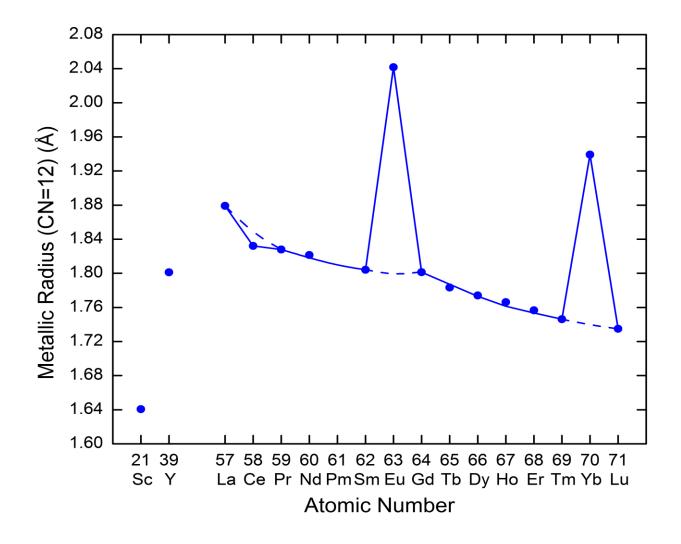
Tetravalent lanthanides

- Ce, Pr, Nd and Tb may have +4 oxidation state
 E⁰_{red} for Ln⁴⁺(aq) + e⁻
 Ln³⁺(aq) in acidic solutions:
 +1.72 V for Ce⁴⁺, stable in water
 +3.20 V for Pr⁴⁺, oxidizes water
 +3.10 V for Tb⁴⁺, oxidizes water
- Many examples of Ce⁴⁺ compounds are known
- Ce⁴⁺ is used as oxidant for redox titrations and in organic synthesis
- Tb⁴⁺ has been reported as carbonato complexes in water
- Pr^{4+} and Nd^{4+} compounds are only known in the solid state, including in mixed-valence oxides Pr_6O_{11} and Tb_4O_7 .

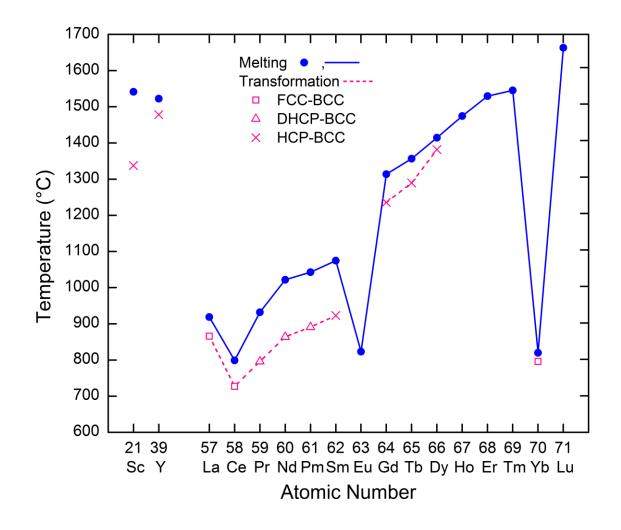
 $(\mathrm{NH}_4)_2[\mathrm{Ce}(\mathrm{NO}_3)_6]$

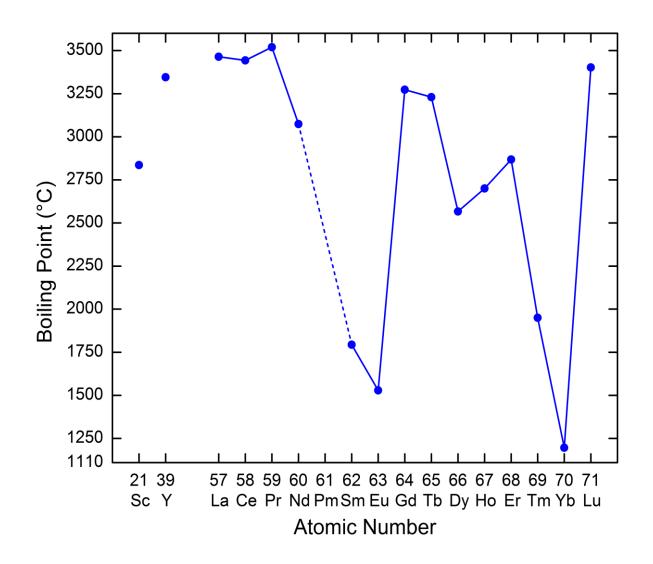

 $(NH_4)_4Ce(SO_4)_4 \cdot 2H_2O$

Divalent lanthanides


• Sm, Eu, and Yb have a relatively stable +2 state

 E_{red}^{0} for Ln³⁺(aq) + e⁻ \leftrightarrows Ln²⁺(aq) in acidic solutions: -0.35 V for Eu²⁺, stable in water -1.15 V for Yb²⁺, reduces water -1.56 V for Sm²⁺, reduces water


Reduction to rare-earth metals


Metallic radius of rare-earth metals

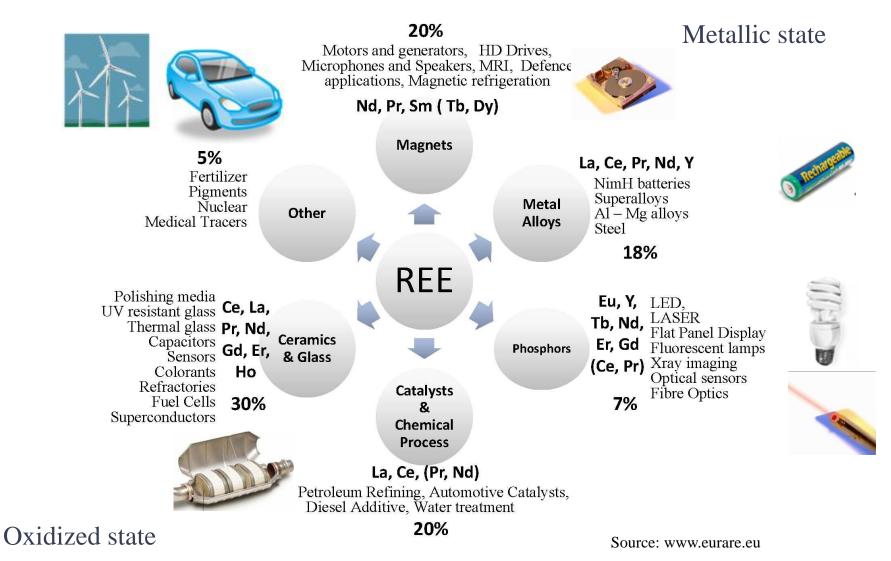
Melting points and transformation temperatures of rare-earth metals

Boiling point of rare-earth metals

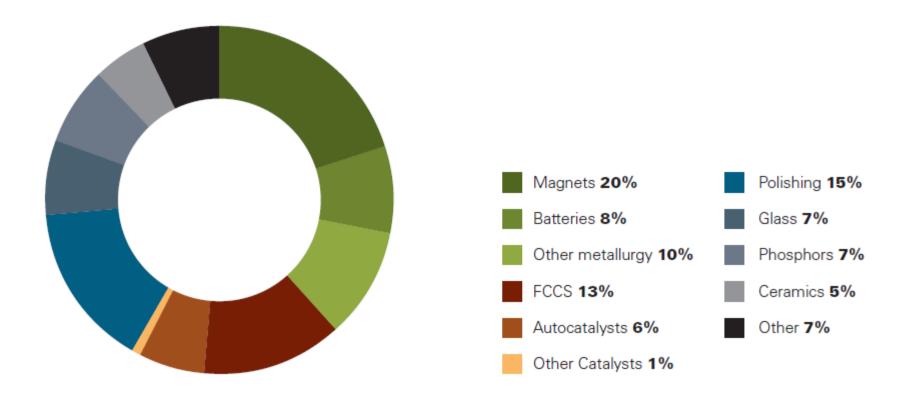
Rare-earth oxides

- Normal Oxides Sesquioxide R₂O₃
 Among the most stable oxides
- Other Valence State Oxides Tetravalent or partially tetravalent

CeO₂ all 4+ Pr_6O_{11} 4PrO₂ + Pr_2O_3 Tb₄O₇ 2TbO₂ + Tb₂O₃ *Divalent or partially divalent (uncommon) EuO* 2+ *Eu*₃O₄ *EuO* + *Eu*₂O₃



 Pr_6O_{11}


Tb₄O₇

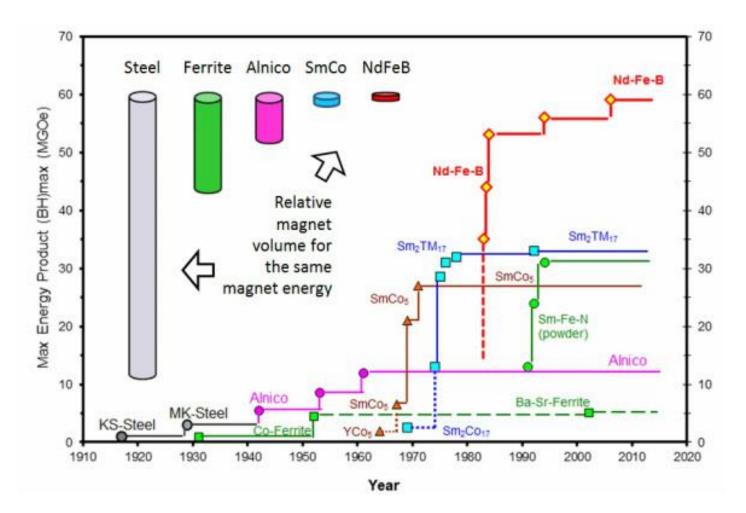
Applications of rare earths

26

Breakdown of estimated rare-earth consumption by sector in 2012

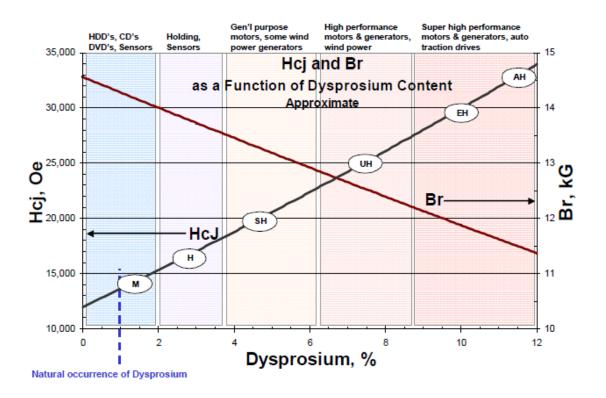
Total REO production: 120,000 tonnes/year

REE usage by application

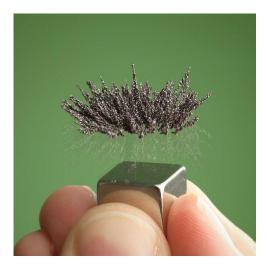

Application	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Other
Magnets	-		23.4	69.4			2	0.2	5		
Battery alloys	50	33.4	3.3	10	3.3						
Metallurgy	26	52	5.5	16.5							
Auto catalysts	5	90	2	3							
FCC	90	10									
Polishing	31.5	65	3.5								
powder											
Glass	24	66	1	3						2	4
additives											
Phosphors	8.5	11				4.9	1.8	4.6		69.2	
Ceramics	17	12	6	12						53	
Others	19	39	4	15	2		1			19	

(source: Lynas Corporation)⁸

Permanent magnets (Nd-Fe-B and Sm-Co)

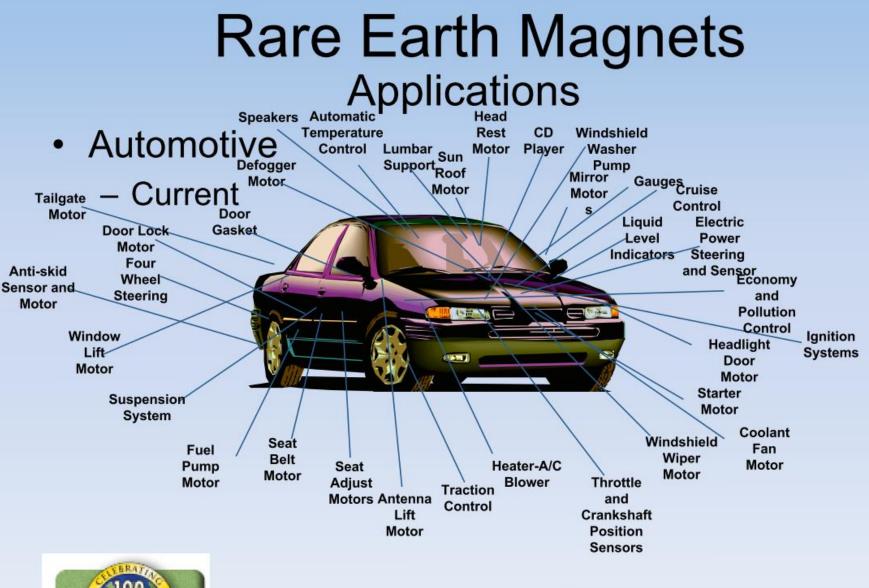

- samarium-cobalt alloys: $SmCo_5$ and Sm_2Co_{17}
 - maximum energy product $(BH)_{max}$:130 to 260 kJ/m³
 - good corrosion resistance
 - high operating temperatures
 - relatively expensive (Co)
 - small part of REE magnet market (2-5%): niche applications, hightech
- neodymium-iron-boron alloy: Nd₂Fe₁₄B
 - maximum energy product $(BH)_{max}$:512 kJ/m³
 - poor corrosion resistance (surface plating required)
 - lower operating temperatures (Dy addition)

Evolution of permanent magnets


Source: http://www.magnetnrg.com

Dysprosium in NdFeB magnets

- Dysprosium is required to allow NdFeB magnets to be used at elevated temperatures (>80 °C), especially in the presence of demagnetizing stress such as in motors and generators.
- Hcj is a measure of a magnet's resistance to demagnetization. Br is a measure of a magnet's field strength.


Strong NdFeB magnets

Source: Magnequench

Spontaneous Materials

Electric and hybrid electric cars

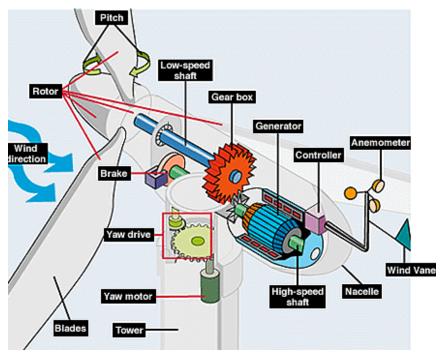
- Hybrid and full electric cars are becoming increasingly more common in the US and Europe
- High dysprosium (10-12 wt%) is required due primarily to the higher temperature of the application
- Each electric car requires on average 1.25 kg of NdFeB magnets (not in Tesla)

Source: www.arnoldclark.com

Electric bikes

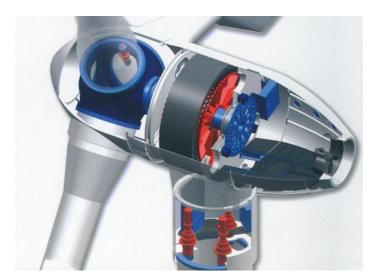
- Electric bikes are a fast-fast growing market, not only in Asia but also in Europe
- Small-sized performant magnets are essential
- 300-600 g of NdFeB magnets per e-bike (intermediate Dy)
- Although the amount of magnet material per unit is small, the quantities are large (> 10,000 tonnes/year)

Source: www.fietsenpagina.nl


Wind power

Source: www.telegraph.co.uk

Wind turbines: induction generator


- Older types of wind turbines use **induction generators**
 - Induction generators must spin fast (> 1800 rpm)
 - Turbine rotor turn at 10-12 rpm, so that a 170:1 gearbox is required to increase the shaft rotational speed
 - Gearboxes are expensive, heavy, noisy, and require frequent maintenance

Source: http://www.daviddarling.info/images/wind_turbine.gif

Wind turbines: direct drive

- New generations of wind turbines use permanent magnets (**direct drive wind turbines**); no gearbox
- Low maintenance: ideal for off-shore applications or for use at difficult accessible locations
- 250 to 600 kg of NdFeB magnets per MW of output
- Replacement of 1 GW coal-fired power plant requires 400 tonnes of NdFeB magnets
- Wind power boosts NdFeB magnet usage

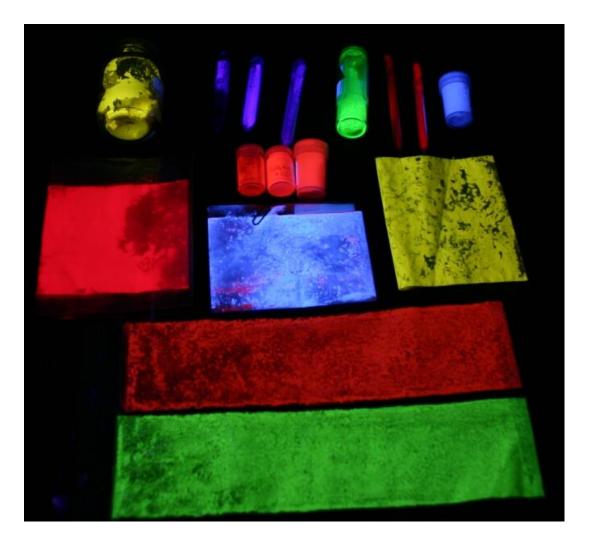
Source: MTorres

Nickel metal hydride batteries

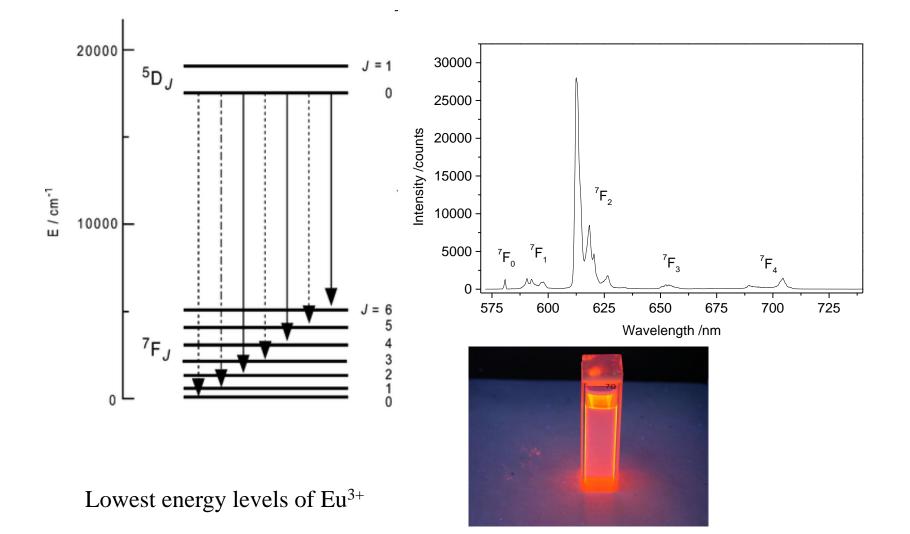
Positive electrode: $Ni(OH)_2 + OH^- \leftrightarrows Ni(OOH) + H_2O + e^ \rightarrow$: charging \leftarrow : discharging

Negative electrode: $M + xH_2O + e^- \leftrightarrows MH_x + xOH^-$

- \rightarrow : charging
- \leftarrow : discharging


M = LaNi₅ or similar alloy

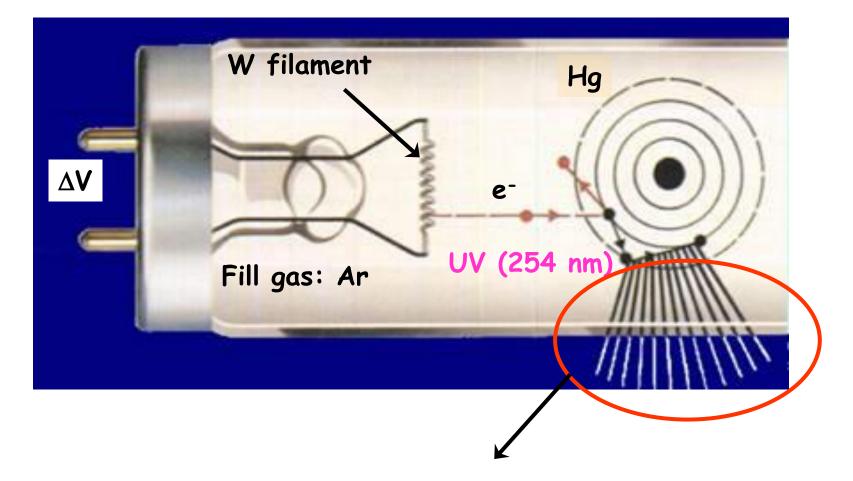
Overall reaction:


 $M + xNi(OH)_2 \leftrightarrows xNiOOH + MH_x$

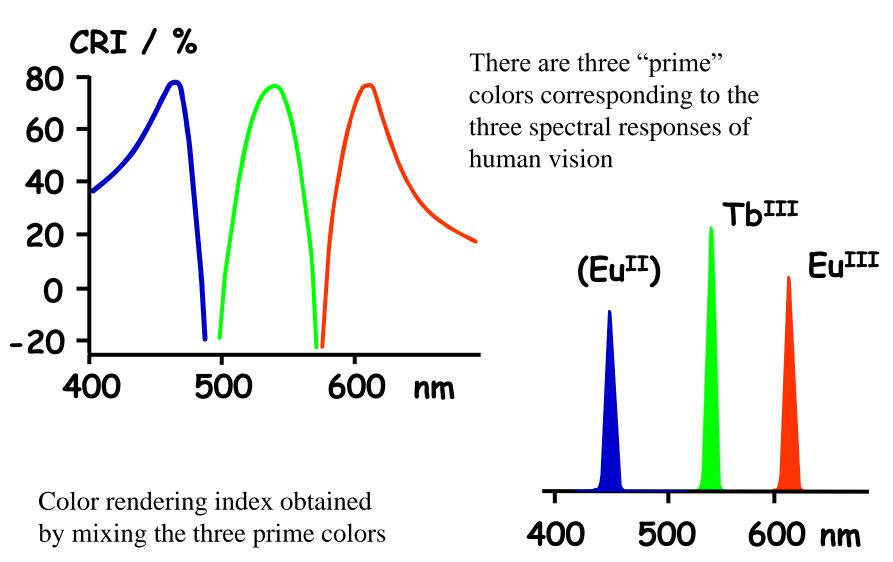
→ : charging← : discharging

Luminescent materials

Luminescent materials



Fluorescent lamps



Fluorescent lamps

UV photons excite phosphor coating. White light is emitted.

Producing white light: trichromatic stimuli

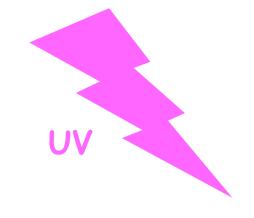
Lamp phosphors

Year	Phosphors		
1960	Ca ₅ (PO ₄) ₃ Cl:Sb ³⁺ ,Mn ²⁺ (white)		
1974	BaMg ₂ Al ₁₆ O ₂₇ :Eu ²⁺	CeMgAl ₁₀ O ₁₉ :Tb ³⁺	Y ₂ O ₃ ∶Eu ³⁺
1990	BaMgAl ₁₀ O ₁₇ :Eu ²⁺ (Sr,Ca) ₅ (PO ₄) ₃ Cl:Eu ²⁺	(La,Ce)PO ₄ :Tb ³⁺ CeMgAl ₁₀ O ₁₉ :Tb ³⁺ (Gd,Ce)MgB ₅ O ₁₀ :Tb ³⁺	Y₂O₃∶Eu³⁺
2005	BaMgAl ₁₀ O ₁₇ :Eu ²⁺	(La,Ce)PO ₄ :Tb ³⁺	Y₂O₃∶Eu³⁺

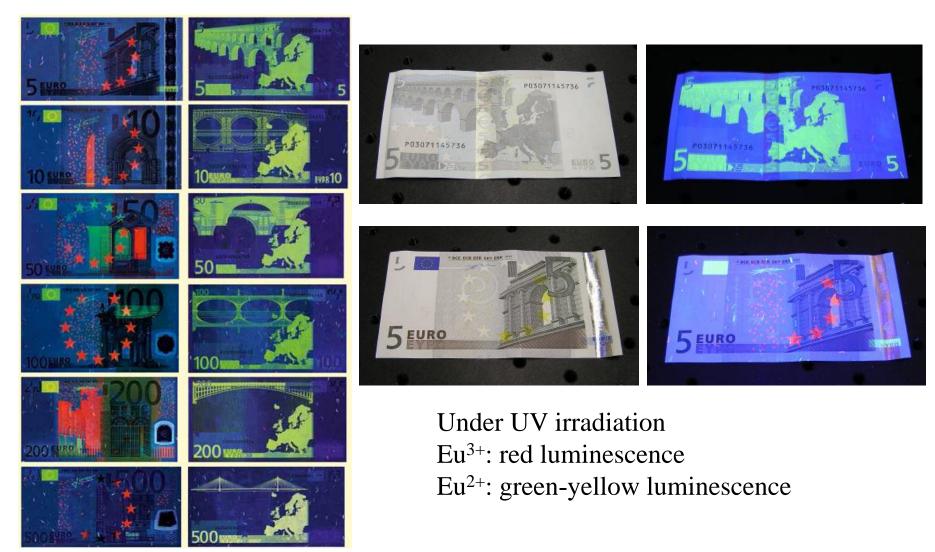
LEDs

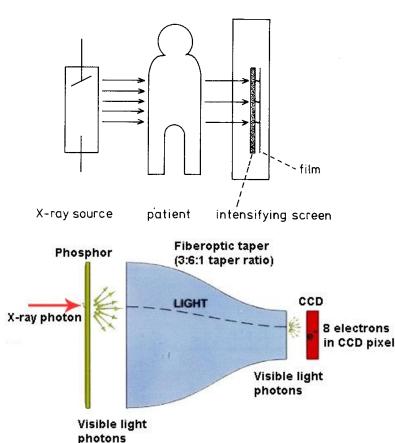
• Blue LED + yellow phosphor = white light

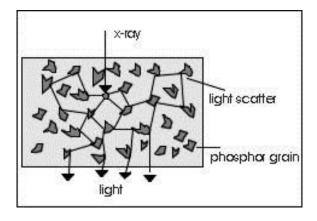
```
blue LED: GaN or GaInN
yellow phosphor: Ce-doped Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> (Ce:YAG)
```

Security inks

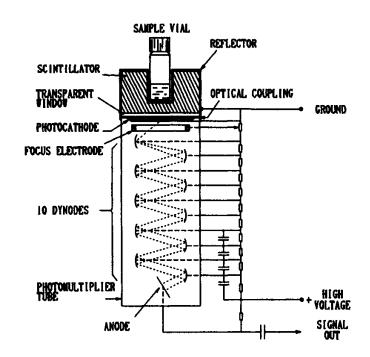

Euro bills



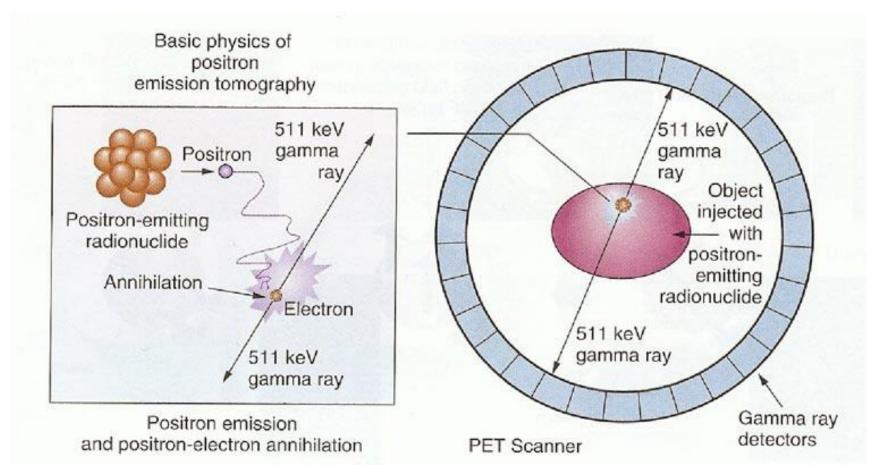

Security inks

X-ray phosphors

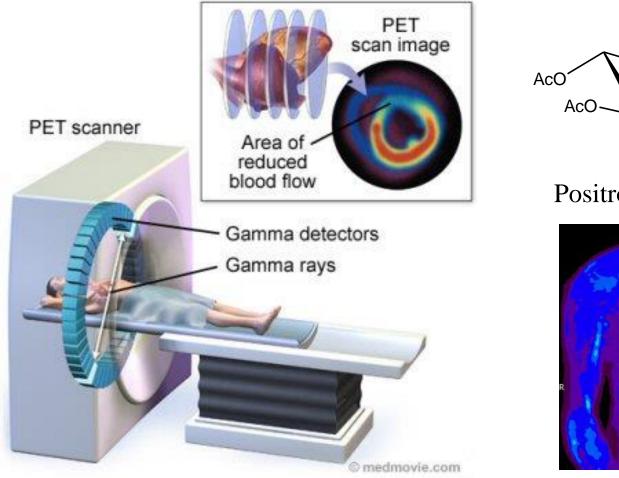
- Designed to respond to X-rays re-emitting the energy as visible light
- Incorporated into a variety of X-ray imaging devices Medical and security applications
- Most used phosphors: $Gd_2O_2S:Tb^{3+}$ green $La_2O_2S:Tb^{3+}$ green $Gd_2O_2S:Pr^{3+}$ green $Gd_2O_2S:Eu^{3+}$ red

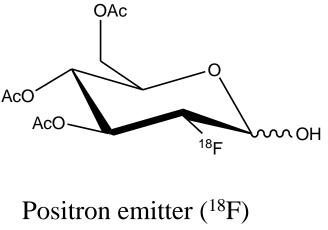


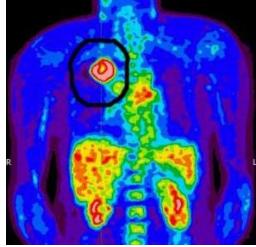
Scintillation phosphors


- Used in the detection of alpha, beta and gamma radiation
- Need to have fast decay times (40-65 ns) and high densities
- Most used phosphors:

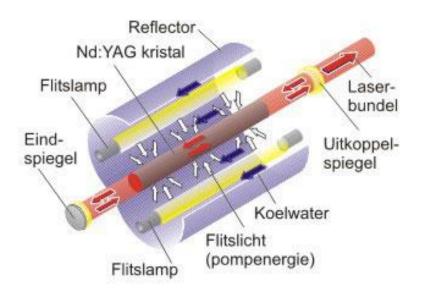
Lu ₂ SiO ₅ :Ce ³⁺	peak: 400 nm
YAlO ₃ :Ce ³⁺	peak: 365 nm
$Y_{3}Al_{5}O_{12}:Ce^{3+}$	peak: 550 nm

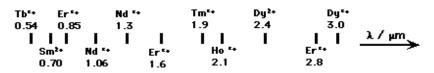

• Use of Lu₂SiO₅:Ce³⁺ in PET scanners is most important application of lutetium



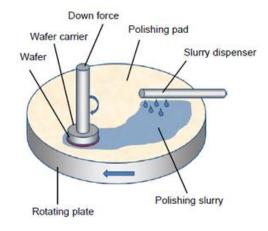

PET scanner

PET scanner




Detects increased metabolic activity

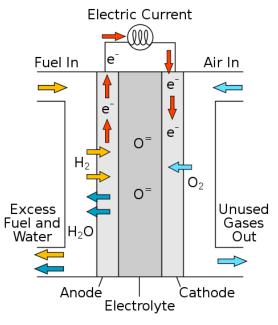
Laser crystals


Spectral Range of Rare Earth Lasers

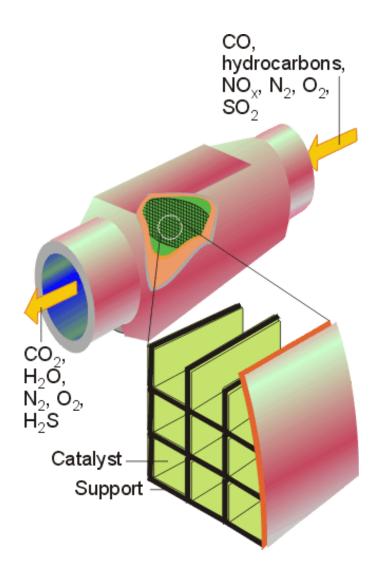
Glass polishing powder (CeO₂)

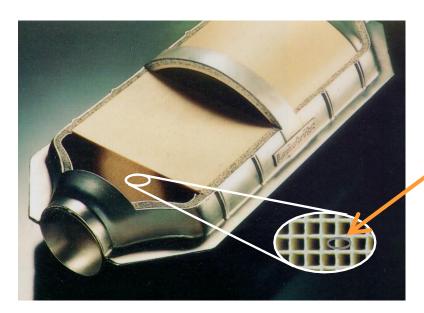
- CeO₂ used from medium to high purity level
- Applied as powder in range $0.5 2.0 \ \mu m$
- To achieve clean glass surfaces free from any scratches
- Applications: optical lenses, optical components, LCD parts, flat glass like TV screens and mirrors
- CMP (Chemical Mechanical Polishing) process: Polishing of Si-Wafers with n-sized CeO₂ slurries (< 100 nm)

Optical glass



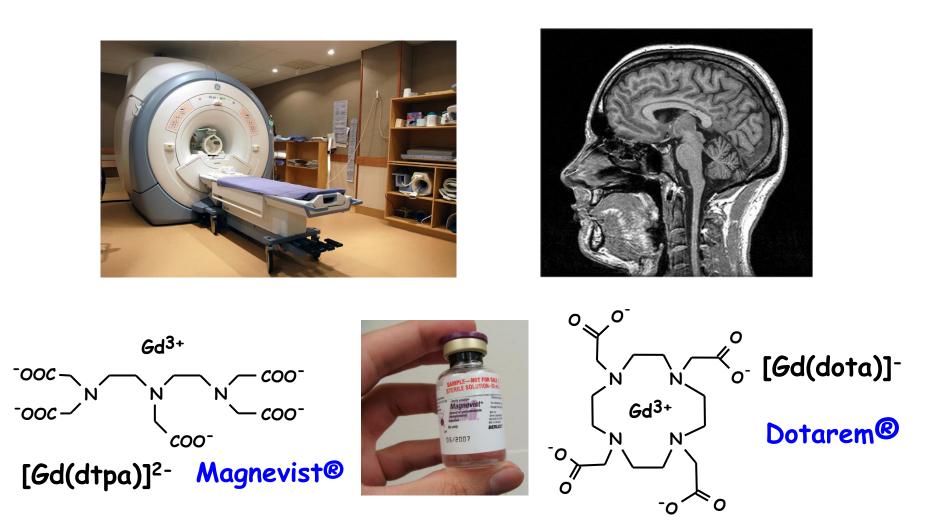
Optical glass for lenses contains up to $40\% \text{ La}_2\text{O}_3$ (high refractive index and low dispersion)


Advanced ceramics


- Y₂O₃ is one of the most thermodynamically stable oxides Can be used up to 2200 °C (m.p.: 2425 °C)
- High purity Y_2O_3 used in casting of industrial and aerospace gasturbine blades, structural and automotive parts
- Compounds of Y, Yb Gd used in thermal spray applications in aerospace and industrial gas turbine applications (thermal barriers)
- Stabilization of ZrO₂ in cubic phase: yttria-stabilized zirconia (YSZ) oxide conductor

solid oxide fuel cells (SOFCs) used to generate electricity from natural gas or from renewable fuels

Automobile exhaust catalysts


, CeO₂

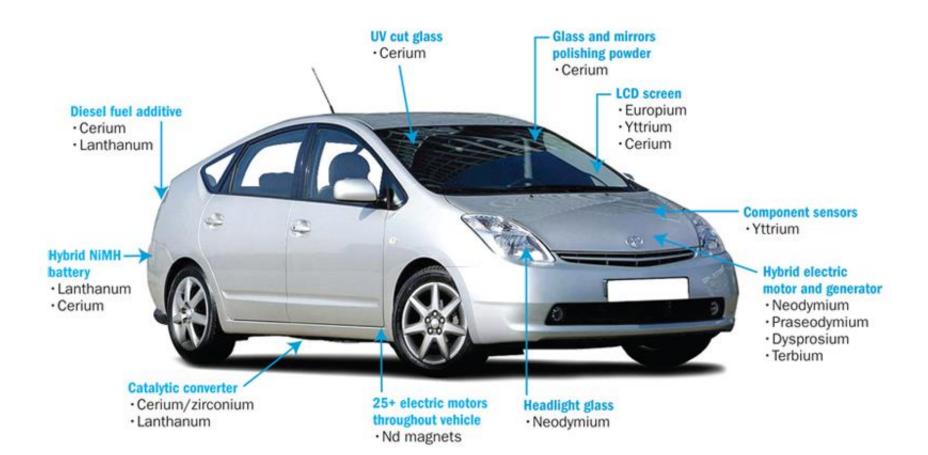
Fluid Cracking Catalyst (FCC)

- Catalytic cracking plays key role in crude oil refining
- FCC split oil into light oil fractions (gasoline and diesel)
- Additionally gases like H_2 and C1 C4 hydrocarbons are formed
- FCC units utilize large amounts of catalyst (50,000 barrel feedstock/day utilize 200–500 t of catalyst)
- REE chloride solutions (mainly LaCl₃ are used in the process, impregnated onto aluminosilicate (zeolite) carrier materials with additional additives (e.g. Pt, Sb,...)

MRI contrast agents

Military applications

F-16 Avionics with REE phosphors



BGM-109 Tomahawk Cruise missile

F-15 with yttria-stabilized zirconia

Rare earths for the car industry

Useful links

http://www.kuleuven.rare3.eu/links/